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In the two previous lectures, we have seen how to transform an analog signal into a digital one with sampling and how to

transform a digital signal into an analog one with interpolation. We use these transforms to introduce the digital Fourier

transforms: the Discrete-Time Fourier Transform (DTFT) corresponding to the Fourier transform, and the Discrete Fourier

Transform (DFT) corresponding to the Fourier series.

1 Discrete-time Fourier transform

1.1 Definition

Let x be a digital signal and xs(t) =
+∞∑

n=−∞
x [n]δ(t − nTs) the corresponding sampled signal. By linearity of the Fourier

transform and by definition of the Fourier transform of a shifted Dirac delta function, the spectrum Xs of signal xs is written:

∀ω ∈ R Xs(ω) =
+∞∑

n=−∞
x [n]e−inTsω

This spectrum depends on the sampling period Ts which does not appears in the equations with digital signals. Introducing

the normalized frequency ν = ωTs =
ω

fs
, we can define the discrete-time Fourier transform.

Definition 1.1 (Discrete-time Fourier transform)

The discrete-time Fourier transform (DTFT) is an application from F(Z,C) to F(R,C) which maps a digital signal x

to the analog function X = F(x) defined by:

∀ν ∈ R X (e iν) =
+∞∑

n=−∞
x [n]e−inν =

+∞∑
n=−∞

x [n]
(
e iν
)−n

0

X (ω)

−A A

1

ω

Spectrum of the analog signal

1



1.2 Inverse DTFT 1 DISCRETE-TIME FOURIER TRANSFORM
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We notice on this figure and we can prove from the definition that the DTFT of a digital signal is periodic with period 2π. In

addition, its modulus is obtained by dividing the modulus of the spectrum of the original analog signal by Ts .

1.2 Inverse DTFT

Now we construct the inverse discrete-time Fourier transform (IDTFT), i.e. we express the samples of the digital signal x

from its DTFT X (e iν). Consider a digital signal x obtained by sampling an analog signal also denoted x with spectrum X ,

associated with the sampled signal xs with spectrum Xs . Using the definition of the analog inverse Fourier transform, we

have:

∀t ∈ R x(t) =
1

2π

∫ +∞

−∞
X (ω)e iωtdω that implies ∀n ∈ Z x [n] = x(nTs) =

1

2π

∫ +∞

−∞
X (ω)e iωnTsdω

As shown on the previous figures, if we want to recover X (ω) from DTFT X (e iν), we have to apply an ideal lowpass

filter with cutoff frequency ωco =
ωs

2
followed by an amplifier of factor Ts , i.e. the system with frequency response

H(ω) = TsR[−ωs
2 ,ωs

2 ]
(ω). Thus we have for any ω ∈ R,

X (ω) = Xs(ω)H(ω) = TsXs(ω)R[−ωs
2 ,ωs

2 ]
(ω)

Applying the change of variable ν = ωTs , we get:

x [n] =
Ts

2π

∫ ωe
2

−ωs
2

Xs(ω)e
iωnTsdω =

1

2π

∫ π

−π
X (e iν)e iνndν
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1 DISCRETE-TIME FOURIER TRANSFORM 1.3 Properties

Definition 1.2 (Inverse discrete-time Fourier transform)

Consider a digital signal x whose DTFT is X (e iν). Then

∀n ∈ Z x [n] =
1

2π

∫ π

−π
X (e iν)e iνndν

1.3 Properties

Proposition 1.1

Discrete-time Fourier transform satisfies the following properties:

(i) linearity: for any two signals x and y and two scalars α and β, F(αx + βy) = αF(x) + βF(y);

(ii) symmetry: for any signal x , if we denote x̃ : n 7→ x [−n], then F(x̃) = F̃(x) = F(x∗)∗;

(iii) decimation: for any K ∈ N∗ and any digital signal x , if we define the decimated signal xK : n 7→ x [Kn] and XK its

DTFT, then

∀ν ∈ R XK (e
iν) =

1

K

K−1∑
k=0

X

(
exp

(
i
ν − k2π

K

))

(iv) convolution: for any two signals x and y , F(x ∗ y) = F(x)F(y);

(v) time-shift: for any k ∈ Z and any digital signal x , F(τk(x))
(
e iν
)
= e−ikνF(x)

(
e iν
)
;

(vi) time differentiation: for any digital signal x , the DTFT of the digital derivative x ′ : n 7→ x [n] − x [n − 1] is

F(x ′)
(
e iν
)
= (1− e−iν)F(x)

(
e iν
)
;

(vii) frequency differentiation: for any signal x , if we set y : n 7→ −inx [n], then F(y) = (F(x))′;

(viii) multiplication: for any two digital signals x and y , F(xy) = F(x)⊗F(y);

(ix) multiplication by a complex exponential: for any a ∈ R, F(e inax) = τa(F(x)).

PROOF : (i) The linearity of the TDFT is deduced from the linearity of the sum.

(ii) By the change of variable n 7→ −n, we obtain, for any ν ∈ R,

F(x̃)
(
e iν
)
=

+∞∑
n=−∞

x [−n]e−inν =
+∞∑

n=−∞
x [n]e−in(−ν) = F(x)

(
e i(−ν)

)
=

(
+∞∑

n=−∞
x [n]∗e−inν

)∗
= F(x∗)∗

(
e iν
)

(iii) To prove this property, we need to go back to sampling. Let an analog signal x and a sampling period Ts producing a

digital signal also denoted x , corresponding to the sampled signal xs . Signal xK results from the sampling of analog signal

x with the sampling period T ′s = KTs , i.e. the frequency ω′s =
ωs

K
. We associate xK with the sampled signal xs,K . Using

Poisson summation formula, we can express the spectra of the sampled signals:

Xs(ω) =
1

Ts

+∞∑
n=−∞

X (ω − nωs) and Xs,K (ω) =
1

KTs

+∞∑
n=−∞

X
(
ω − nωs

K

)
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1.3 Properties 1 DISCRETE-TIME FOURIER TRANSFORM

Using bijection Z× J0,K − 1K→ Z (n, k) 7→ nK + k , we can write

Xs,K (ω) =
1

KTs

+∞∑
n=−∞

K−1∑
k=0

X

(
ω − kωs

K
− nωs

)
=

1

K

K−1∑
k=0

1

Ts

+∞∑
n=−∞

X

((
ω − kωs

K

)
− nωs

)
=

1

K

K−1∑
k=0

Xs

(
ω − kωs

K

)

For the DTFT of xK , the normalized frequency is ν = ωKTs , so that

XK (e
iν) = Xs,K

(
ν

KTs

)
=

1

K

K−1∑
k=0

Xs

(
(ν/Ts)− kωs

K

)
=

1

K

K−1∑
k=0

X

(
exp

(
i
ν − k2π

K

))

(iv) For any ν ∈ R,

F(x ∗ y)
(
e iν
)
=

+∞∑
n=−∞

(x ∗ y)[n]e−inν =
+∞∑

n=−∞

+∞∑
k=−∞

x [k]e−ikνy [n − k]e−i(n−k)ν

=

(
+∞∑

n=−∞
x [n]e−inν

)(
+∞∑

m=−∞
y [m]e−imν

)
= F(x)

(
e iν
)
F(y)

(
e iν
)

(v) For any ν ∈ R and any k ∈ Z,

F(τk(x))
(
e iν
)
=

+∞∑
n=−∞

x [n − k]e−inν = e−ikν
+∞∑

n=−∞
x [n]e−inν = e−ikνF(x)

(
e iν
)

(vi) The digital derivative can be written x ′ = x − τ1(x). Using properties (i) and (v), we find, for any ν ∈ R,

F(x ′)
(
e iν
)
= F(x)

(
e iν
)
−F(τ1(x))

(
e iν
)
= (1− e−iν)F(x)

(
e iν
)

(vii) For any ν ∈ R,

F(y)
(
e iν
)
=

+∞∑
n=−∞

y [n]e−inν =

(
+∞∑

n=−∞
x [n]e−inν

)′
=

+∞∑
n=−∞

(−in)x [n]e−inν

thus by identification, for any n ∈ N, y [n] = −inx [n].
(viii) Let two digital signals x and y with respective DTFTs X and Y . Let Z = X ⊗ Y and z the corresponding digital signal.

We are using the circular convolution here because DTFTs X and Y are both periodic with period 2π. Then for any n ∈ Z,

z [n] =
1

2π

∫ π

−π
(X ⊗ Y )(e iν)e iνndν =

1

2π

∫ π

−π

(
1

2π

∫ π

−π
X (e iu)Y (e i(ν−u))du

)
e iνndν

By the change of variable (u, ν) 7→ (u, ν − u) and by Fubini’s theorem:

z [n] =
1

4π2

∫ π

−π

∫ π

−π
X (e iu)e iunY (e i(ν−u))e i(ν−u)ndudν =

1

4π2

(∫ π

−π
X (e iν)e iνndν

)(∫ π

−π
Y (e iν)e iνndν

)
= x [n]y [n]

Finally, F(xy) = F(z) = F(x)⊗F(y).
(ix) Let a ∈ R. Then, for any ν ∈ R,

F(e inax)
(
e iν
)
=

+∞∑
n=−∞

e inax [n]e−inν =
+∞∑

n=−∞
x [n]e−in(ν−a) = F(x)

(
e−i(ν−a)

)
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2 DISCRETE FOURIER TRANSFORM

Theorem 1.2 (Plancherel’s identity)

Let a digital square summable signal x and its DTFT X = F(x). Then

+∞∑
n=−∞

|x [n]|2 = 1

2π

∫ π

−π
|X (e iν)|2dν

PROOF : We recognize on the left side the energy of signal x :

+∞∑
n=−∞

|x [n]|2 = E (x) = γx [0] = (x ∗ x̃)[0]

with x̃ : n 7→ x∗[−n]. We set y = (x ∗ x̃) and Y = F(y) its DTFT, so that

∀n ∈ Z y [n] =
1

2π

∫ π

−π
Y (e iν)e iνndν and E (x) = y [0] =

1

2π

∫ π

−π
Y (e iν)dν

Applying property (ii) of Proposition 1.1, we can write F(x̃) = F(x)∗. Thus we have

Y (e iν) = F(x ∗ x̃)(e iν) = F(x)(e iν)F(x̃)(e iν) = X (e iν)X ∗(e iν) = |X (e iν)|2

which yields

+∞∑
n=−∞

|x [n]|2 = y [0] =
1

2π

∫ π

−π
Y (e iν)dν =

1

2π

∫ π

−π
|X (e iν)|2dν

2 Discrete Fourier transform

Now we introduce the Fourier transform for digital periodic signals, i.e. the digital version of Fourier series. First, we define

this new transform based on the Fourier transform of the corresponding sampled signal, then we exhibit an orthonormal

basis for digital periodic signals confirming the first approach.

2.1 First approach - definition

Let a digital periodic signal x ∈ FN(Z,C) with period N . Let xs(t) =
+∞∑

n=−∞
x [n]δ(t − nTs) the sampled signal associated

with x . From the periodicity of x , this signal xs can be written:

xs(t) =
N−1∑
k=0

+∞∑
`=−∞

x [k + `N]δ (t − (k + `N)Ts) =
N−1∑
k=0

x [k]
+∞∑
`=−∞

δ (t − `NTs − kTs) =
N−1∑
n=0

x [n]τnTs (pNTs )(t)
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2.2 Second approach - inverse DFT 2 DISCRETE FOURIER TRANSFORM

Using the linearity of the analog Fourier transform and Poisson summation formula, we can write the spectrum xs for any

ω ∈ R:

Xs(ω) =
N−1∑
n=0

x [n]F (τnTs (pNTs )) (ω) =
N−1∑
n=0

x [n]e−iωnTsF (pNTs ) (ω)

=
ωs

N

N−1∑
n=0

x [n]e−iωnTs

+∞∑
k=−∞

δ
(
ω − k

ωs

N

)
=
ωs

N

+∞∑
k=−∞

δ
(
ω − k

ωs

N

) N−1∑
n=0

x [n]e−iωnTs

=
ωs

N

+∞∑
k=−∞

δ
(
ω − k

ωs

N

) N−1∑
n=0

x [n]e−ik
ωs
N nTs =

ωs

N

+∞∑
k=−∞

δ
(
ω − k

ωs

N

) N−1∑
n=0

x [n]e−i
2π
N kn

=
ωs

N

+∞∑
k=−∞

X [k]δ
(
ω − k

ωs

N

)

with X [k] =
N−1∑
n=0

x [n]e−i
2π
N kn.

Remarks:

I We deduce from this computation that the Fourier transform of the sampled signal, thus the DTFT of the corresponding

signal, is a sum of Dirac delta functions. This is consistent with the fact that the Fourier transform of an analog periodic

signal is a sum of Dirac delta functions.

I We discarded the factor
ωs

N
in the definition of X [k]. We give the reason for this removal with the second approach.

I Since x is periodic with period N , we only keep samples x [0], ... , x [N − 1] in the expression of X [k].

Definition 2.1 (Discrete Fourier Transform)

The Discrete Fourier Transform (DFT) is an application from F(Z/NZ,C) to F(Z,C) which maps a time-limited digital

signal x of length N to the digital signal X defined by:

∀k ∈ Z X [k] =
N−1∑
n=0

x [n]e−i
2π
N kn

Proposition 2.1

The DFT X of a digital periodic signal with period N is also a digital periodic signal with period N : for any k ∈ Z,

X [k + N] = X [k].

PROOF : For any k ∈ Z,

X [k + N] =
N−1∑
n=0

x [n]e−i
2π
N kne−i

2π
N Nn =

N−1∑
n=0

x [n]e−i
2π
N kn

(
e−i2π

)n
=

N−1∑
n=0

x [n]e−i
2π
N kn = X [k]

2.2 Second approach - inverse DFT

Now we discuss our second approach of the DFT by introducing an orthonormal basis for digital periodic signals.
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2 DISCRETE FOURIER TRANSFORM 2.2 Second approach - inverse DFT

Proposition 2.2

For any j ∈ J0,N − 1K, we define the following digital periodic signal ej ∈ FN(Z,R):

∀n ∈ Z ej [n] =

{
1 if n = j mod N

0 otherwise

The set (ej)j∈J0,N−1K is a basis of vector space FN(Z,C) whose dimension is then N .

PROOF : It is clear from the definition of signals ej that any signal x ∈ FN(Z,C) can be written x =
N−1∑
j=1

x [j ]ej , so that

(ej)j∈J0,N−1K is a generating set of FN(Z,C). Let (λ0, ... ,λN−1) ∈ CN such that λ0e0 + ...λN−1eN−1 = 0, i.e. for any

n ∈ Z, λ0e0[n] + ...λN−1eN−1[n] = 0. Taking n = j for all j ∈ J0,N − 1K, we get λj = 0, thus λ0 = · · · = λN−1 = 0.

Thereby, (ej)j∈J0,N−1K is linearly independent thus it is a basis of FN(Z,C).

Proposition 2.3 (Inverse Discrete Fourier Transform)

The set of exponentials
(
e i

2π
N kn
)
k∈J0,N−1K

is an orthonormal basis of FN(Z,C), so that the digital signal x ∈ FN(Z,C)
with DFT X can be written:

∀n ∈ Z x [n] =
N−1∑
k=0

〈x , e i 2πN kn〉Ne i
2π
N kn =

1

N

N−1∑
k=0

X [k]e i
2π
N kn

PROOF : For any k ∈ J0,N − 1K,

‖e i 2πN kn‖2N = 〈e i 2πN kn, e i
2π
N kn〉N =

1

N

N−1∑
n=0

e i
2π
N kne i

2π
N kn =

1

N

N−1∑
n=0

1 =
N

N
= 1

For any (k, `) ∈ J0,N − 1K2 such that k 6= `,

〈e i 2πN kn, e i
2π
N `n〉N =

1

N

N−1∑
n=0

e i
2π
N kne i

2π
N `n =

1

N

N−1∑
n=0

e i
2π
N (k−`)n =

1

N

1− e i2π(k−`)

1− e i
2π
N (k−`)

= 0

which proves that this set of exponentials is an orthonormal set thus a linearly independent set of FN(Z,C). This set

contains exactly N elements and vector space FN(Z,C) is of dimension N thus this set of exponentials is an orthonormal

basis of FN(Z,C). Therefore, any digital periodic signal x with period N can be written:

∀n ∈ Z x [n] =
N−1∑
k=0

〈x , e i 2πN kn〉Ne i
2π
N kn

with

〈x , e i 2πN kn〉N =
1

N

N−1∑
n=0

x [n]e i
2π
N kn =

1

N

N−1∑
n=0

x [n]e−i
2π
N kn =

1

N
X [k]

Proposition 2.4 (Plancherel’s identity)

For any signal x ∈ FN(Z,C) with DFT X ,

N−1∑
n=0

|x [n]|2 = 1

N

N−1∑
k=0

|X [k]|2
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2.3 Properties and example 2 DISCRETE FOURIER TRANSFORM

PROOF : As for Parseval’s identity for Fourier series, this identity is an adaptation of Pythagorean theorem. Using the

orthonormal basis of complex exponentials from the previous preposition, we can write:

‖x‖2N =
1

N

N−1∑
n=0

|x [n]|2 = 〈x , x〉N =

〈
N−1∑
k=0

1

N
X [k]e i

2π
N kn,

N−1∑
`=0

1

N
X [`]e i

2π
N `n

〉
=

1

N2

N−1∑
k=0

|X [k]|2

yielding the result.

Since x and X are both periodic with period N we can restrict both signals to samples x [n] for n ∈ J0,N − 1K and X [k] for

k ∈ J0,N − 1K. Thus we can consider signals x and X as vectors of CN and the DFT as an mapping from F(Z/NZ,C) to

F(Z/NZ,C), This is how signal processing softwares deal with signals. Setting ω = e−i
2π
N , we can rewrite the definition of

DFT matricially:

X [0]

X [1]

X [2]
...

X [N − 1]

 =



1 1 1 ... 1

1 ω ω2 ... ωN−1

1 ω2 ω4 ... ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) ... ω(N−1)2





x [0]

x [1]

x [2]
...

x [N − 1]

 = A(ω)



x [0]

x [1]

x [2]
...

x [N − 1]


We can show by a computation that:

A(ω)A(ω−1) =



1 1 1 ... 1

1 ω ω2 ... ωN−1

1 ω2 ω4 ... ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) ... ω(N−1)2





1 1 1 ... 1

1 ω−1 ω−2 ... ω−(N−1)

1 ω−2 ω−4 ... ω−2(N−1)

...
...

...
. . .

...

1 ω−(N−1) ω−2(N−1) ... ω−(N−1)
2

 = NIN

which implies that the inverse of matrix A(ω) is A(ω)−1 =
1

N
A(ω−1). Thus



x [0]

x [1]

x [2]
...

x [N − 1]

 =
1

N
A(ω−1)



X [0]

X [1]

X [2]
...

X [N − 1]


which allows us to retrieve the inverse DFT.

2.3 Properties and example

Proposition 2.5

We consider digital signals of finite length N . The discrete Fourier transform satisfies the following properties:

(i) linearity: for any two signals x and y and two scalars α and β, F(αx + βy) = αF(x) + βF(y);

(ii) symmetry: for any signal x , if we denote x̃ : n 7→ x [N − n], then F(x̃) = F̃(x) = F(x∗)∗;

(iii) circular convolution: for any two signals x and y , F(x ⊗ y) = F(x)F(y);

(iv) time shift: for any a ∈ J0,N − 1K and any signal x , F(τa(x))[k] = e−i
2π
N kaF(x)[k];

8



2 DISCRETE FOURIER TRANSFORM 2.4 Fast Fourier transform

(v) multiplication: for any two signals x and y , F(xy) = F(x)⊗F(y);

(vi) frequency shift for any a ∈ J0,N − 1K, F
(
xe i

2π
N anx

)
= τa(F(x))

PROOF : (i) We prove the linearity as for the other Fourier transforms.

(ii) We prove this property as for the DTFT using the change of variable n 7→ N − n instead of n 7→ −n.

(iii) For any k ∈ J0,N − 1K,

F(x ⊗ y)[k] =
N−1∑
n=0

N−1∑
m=0

x [m]e−i
2π
N kmy [n −m]e−i

2π
N k(n−m) =

(
N−1∑
n=0

x [n]e−i
2π
N kn

)(
N−1∑
m=0

y [m]e−i
2π
N km

)
= F(x)[k]F(y)[k]

(iv) For any a ∈ J0,N − 1K and for any k ∈ J0,N − 1K,

F(τa(x))[k] =
N−1∑
n=0

x [n − a]e−i
2π
N kn = e−i

2π
N ka

N−1∑
n=0

x [n]e−i
2π
N kn = e−i

2π
N kaF(x)[k]

(v) Let two signals x and y with respective DFTs X and Y . Let Z = X ⊗ Y and z the corresponding signal. Then for any

n ∈ J0,N − 1K,

z [n] =
1

N

N−1∑
k=0

(X ⊗ Y )[k]e i
2π
N kn =

1

N

N−1∑
k=0

(
1

N

N−1∑
`=0

X [`]Y [k − `]

)
e i

2π
N kn

=
1

N2

N−1∑
k=0

N−1∑
`=0

X [`]e i
2π
N `nY [k − `]e i 2πN (k−`)n =

1

N2

(
N−1∑
k=0

X [k]e i
2π
N kn

)(
N−1∑
`=0

Y [`]e i
2π
N `n

)
= x [n]y [n]

Finally, F(xy) = F(z) = F(x)⊗F(y).
(vi) For any k ∈ J0,N − 1K,

τa(F(x))[k] = F(x)[k − a] =
N−1∑
n=0

x [n]e−i
2π
N (k−a)n =

N−1∑
n=0

x [n]e i
2π
N ane−i

2π
N kn = F(xe i 2πN an)[k]

2.4 Fast Fourier transform

Consider a time-limited signal x = (x [0], x [1], ... , x [N − 1]) of length N . We recall that the DFT X of x is also of length N

and is defined by:

∀k ∈ J0,N − 1K X [k] =
N−1∑
n=0

x [n]e−i
2π
N kn

We express the complexity of computing this DFT in terms of the number of required multiplications of complex numbers.

We assume that we have already access to the complex exponentials e−i
2π
N kn. In this case, each term of the sum requires

one multiplication, thus the computation of one sample X [k] requires N multiplications. Since there are N samples X [k] to

evaluate, the evaluation of the DFT X of length N requires N2 multiplications.

A Fast Fourier Transform (FFT) algorithm uses recurrences in the definition of X to decrease the complexity of its evaluation.

In this lecture, we present the Cooley-Tukey algorithm which expresses the DFT of a signal of length 2N as a function of the

DFTs of two signals of length N . Thereby, consider a digital time-limited signal x = (x [0], x [1], ... , x [2N − 1]) of length 2N ,

9
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and whose DFT X is also of length 2N . We define the two following signals of length N : signal x̂ = (x [0], x [2], ... , x [2N−2])
of even-index samples of x and signal x̃ = (x [1], x [3], ... , x [2N − 1]) of odd-index samples of x . We denote X̂ et X̃ their

respective DFTs. For any k ∈ J0,N − 1K,

X [k] =
2N−1∑
n=0

x [n]e−i
2π
2N kn =

N−1∑
n=0

x [2n]e−i
2π
N kn +

N−1∑
n=0

x [2n + 1]e−i
2π
N kne−i

2π
2N k =

N−1∑
n=0

x̂ [n]e−i
2π
N kn + e−i

2π
2N k

N−1∑
n=0

x̃ [n]e−i
2π
N kn

= X̂ [k] + e−i
2π
2N k X̃ [k]

This formula provides the N first values of the DFT X which is of lengh 2N . Since DFTs X̂ [k] and X̃ [k] are periodic with

period N , we can find the remaining values of X by writing, for any k ∈ J0,N − 1K,

X [k + N] = X̂ [k + N] + e−i
2π
2N (k+N)X̃ [k + N] = X̂ [k] + e−i

2π
2N ke−iπX̃ [k] = X̂ [k]− e−i

2π
2N k X̃ [k]

Therefore, we have, for any k ∈ J0,N − 1K,

X [k] = X̂ [k] + e−i
2π
2N k X̃ [k] and X [k + N] = X̂ [k]− e−i

2π
2N k X̃ [k]

If x = (x [0]) is of length 1, then X = (X [0]) is also of length 1 and by the definition of the DFT, X [0] = x [0]. Therefore, we

can write the following recursive algorithm to compute the DFT of a signal x whose length N = 2n is a power of 2.

Algorithm 1 Cooley-Tukey algorithm

1: procedure FFT(x )
2: Input digital time-limited signal x = (x [0], x [1], ... , x [N − 1]) of length N . Assume that N = 2n is a power of 2
3: if N = 1 then
4: X = (X [0]) is of length 1 and X [0]← x [0]
5: else
6: Set x̂ ← (x [0], x [2], ... , x [N − 2])
7: Set x̃ ← (x [1], x [3], ... , x [N − 1])

8: Compute X̂ ← FFT (x̂)

9: Compute X̃ ← FFT (x̃)
10: for k ∈

q
0, N

2 − 1
y

do

11: X [k]← X̂ [k] + e−i
2π
N k X̃ [k]

12: X [k + N/2] = X̂ [k]− e−i
2π
N k X̃ [k]

13: end for
14: end if
15: Return DFT X = (X [0],X [1], ... ,X [N − 1])
16: end procedure

We can show that this algorithm requires the computation of
N

2
log2(N) multiplications instead of N2 for the direct evaluation.

Remark: This algorithm can be generalized to a signal of composite length N = N1N2. In this case, the algorithm computes

N1 DFTs of sub-signals of lengths N2.
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